Redefining the DNA-Binding Domain of Human XPA
نویسندگان
چکیده
Xeroderma pigmentosum complementation group A (XPA) protein plays a critical role in the repair of DNA damage via the nucleotide excision repair (NER) pathway. XPA serves as a scaffold for NER, interacting with several other NER proteins as well as the DNA substrate. The critical importance of XPA is underscored by its association with the most severe clinical phenotypes of the genetic disorder Xeroderma pigmentosum. Many of these disease-associated mutations map to the XPA(98-219) DNA-binding domain (DBD) first reported ~20 years ago. Although multiple solution NMR structures of XPA(98-219) have been determined, the molecular basis for the interaction of this domain with DNA is only poorly characterized. In this report, we demonstrate using a fluorescence anisotropy DNA-binding assay that the previously reported XPA DBD binds DNA with substantially weaker affinity than the full-length protein. In-depth analysis of the XPA sequence suggested that the original DBD construct lacks critical basic charge and helical elements at its C-terminus. Generation and analysis of a series of C-terminal extensions beyond residue 219 yielded a stable, soluble human XPA(98-239) construct that binds to a Y-shaped ssDNA-dsDNA junction and other substrates with the same affinity as the full-length protein. Two-dimensional (15)N-(1)H NMR suggested XPA(98-239) contains the same globular core as XPA98-219 and likely undergoes a conformational change upon binding DNA. Together, our results demonstrate that the XPA DBD should be redefined and that XPA(98-239) is a suitable model to examine the DNA binding activity of human XPA.
منابع مشابه
Structural features of the minimal DNA binding domain (M98-F219) of human nucleotide excision repair protein XPA.
XPA, an essential protein in nucleotide excision repair (NER), interacts with damaged DNA and other proteins (RPA, ERCC1 and TFIIH) to remove a wide variety of chemically and structurally distinct DNA lesions from the eukaryotic genome. To understand the structural basis for the role of XPA in the repair process, the structure of the minimal DNA binding domain of human XPA [XPA-MBD (M98-F219)] ...
متن کاملA new structural insight into XPA–DNA interactions
XPA (xeroderma pigmentosum group A) protein is an essential factor for NER (nucleotide excision repair) which is believed to be involved in DNA damage recognition/verification, NER factor recruiting and stabilization of repair intermediates. Past studies on the structure of XPA have focused primarily on XPA interaction with damaged DNA. However, how XPA interacts with other DNA structures remai...
متن کاملAnalysis of the XPA and ssDNA-binding surfaces on the central domain of human ERCC1 reveals evidence for subfunctionalization
Human ERCC1/XPF is a structure-specific endonuclease involved in multiple DNA repair pathways. We present the solution structure of the non-catalytic ERCC1 central domain. Although this domain shows structural homology with the catalytically active XPF nuclease domain, functional investigation reveals a completely distinct function for the ERCC1 central domain by performing interactions with bo...
متن کاملAn interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair.
Replication protein A (RPA) is required for simian virus 40-directed DNA replication in vitro and for nucleotide excision repair (NER). Here we report that RPA and the human repair protein XPA specifically interact both in vitro and in vivo. Mapping of the RPA-interactive domains in XPA revealed that both of the largest subunits of RPA, RPA-70 and RPA-34, interact with XPA at distinct sites. A ...
متن کاملPoly(ADP‐ribose)‐mediated interplay of XPA and PARP1 leads to reciprocal regulation of protein function
Poly(ADP-ribose) (PAR) is a complex and reversible post-translational modification that controls protein function and localization through covalent modification of, or noncovalent binding to target proteins. Previously, we and others characterized the noncovalent, high-affinity binding of the key nucleotide excision repair (NER) protein XPA to PAR. In the present study, we address the functiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 136 شماره
صفحات -
تاریخ انتشار 2014